How to use the macros for the comparison of *MuKpi* macro with GEANT

J. Bouchet

October 13, 2008

The current location of the code is at : /star/institutions/emn/bouchet/Joe/ I use *STARPRO* version.

1 Brief introduction to the code

There are 3 macros to use in order to plot comparison (of p_T , decaylength,etc ...) of D^0 reconstructed by MuKpi and the initial input from GEANT:

• geant_out_all.C1 : run over .geant.root file

• myMuKpi.C : run over .MuDst.root file

• readHisto.C: make histogram

The idea is to create histogram from the GEANT input, then from the MuDst input and combine them.

1.1 geant_out_all.C

the output file name is myresults_geant.root

you have to set the number of files to set; there is a link in the macro to the D^0 pure sample list I used: mypureD0listGeant2.list.

We know that for each file, 400 D^0 are in, then I declare 400×NFile histograms for the p_T and decay length of D^0 :

- 1. : hpTDOGEANT_CurrentFile : it is a 1-D histogram with X-axis from 1 to 400 (number of event Id in this file). the Y-axis will have the value of the p_T of the D^0 (see figure 1)
- 2. : hDecay_CurrentFile : it is a 1-D histogram with X-axis from 1 to 400 (number of event Id in this file). the Y-axis will have the value of the decay length of the D^0

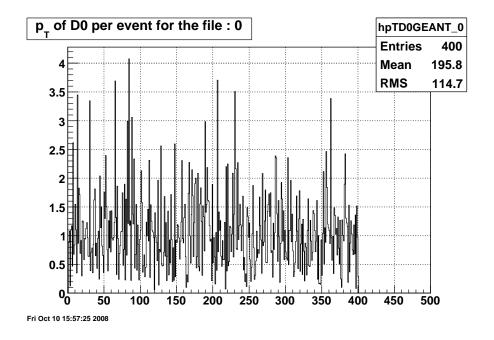


Figure 1: for a given file : X-axis : number of event ; Y-axis : the peak gives the value of the p_T of the D^0

There are not cut in this macro: we have to fill all the D^0 reconstructed: we select them by looping over the $g2t_Track_table$ and by requiring that the GEANT_id of the current track is 37 and that the vertex id of this track has the same id of the vertex of the next tracks (stop_vertex_id(i) = start_vertex_id(i+1)).

The decay length is calculated as:

$$DL = \sqrt{\overrightarrow{L}} \overrightarrow{L}$$
 (1)

where \overrightarrow{L} is a vector which components are :

 $L_i = SecondaryVertex_i - PrimaryVertex_i, \ \text{with i} = \{\texttt{x}, \texttt{y}, \texttt{z}\}$

1.2 myMuKpi.C

This macro is the same as we used previously, so it has some cuts related to event position, quality of tracks.

The same histogram as in *geant_out_all.C* are also filled in this macro; their names ares:

- 1. hpTD0_CurrentFile
- 2. hdLD0_CurrentFile

The p_T is calculated as :

$$p_T = PP[s].Perp(); (2)$$

¹the name of output and macro don't make any differences: you can recall them as you want

,where PP is the TLorentzVector from the association of positive and negative tracks.

DL is calculated as:

$$DL = \sqrt{diff_x^2 + diff_y^2 + diff_z^2}$$
 (3)

, where $diff_i = dl_i$ - $PrimaryVertex_i$ with dl (0-field approximation) from DCA_xy and DCA_z of daughter tracks.

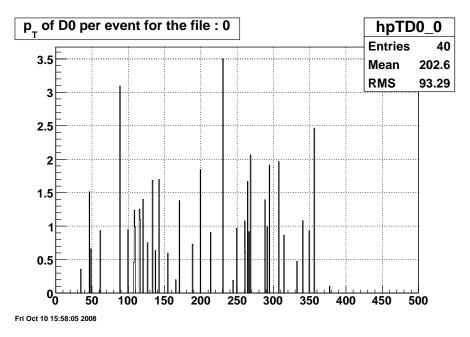


Figure 2: for a given file : X-axis : number of event ; Y-axis : the peak gives the value of the p_T of the D^0

From Fig. 2, we see that the number of entries (for the same file) is much lower that in GEANT; it is because of the cuts apply in the macro that removes some events

1.3 readHisto.C

The last par tis to make association : this macro open the 2 root files where histograms are written. For each file processed :

- 1. retrieve the proper histogram from the first root file
- 2. loop over the bin x (event Id) and get the p_T value
- 3. for the current bin, open the second root file and get the same p_T if it exists
- 4. fill some histograms

The histograms write the difference p_T^{GEANT} - p_T^{MuKpi} as a function of p_T^{GEANT} in order to use Fit-SlicesY() from ROOT to plot the mean and σ .

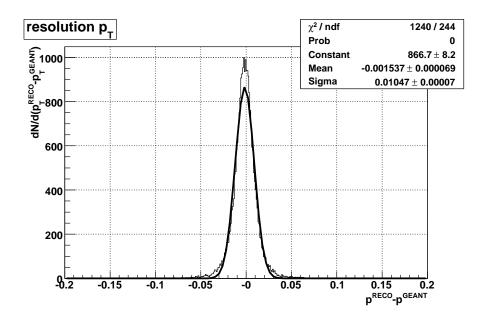


Figure 3: Distribution of p_T^{GEANT} - p_T^{MuKpi}

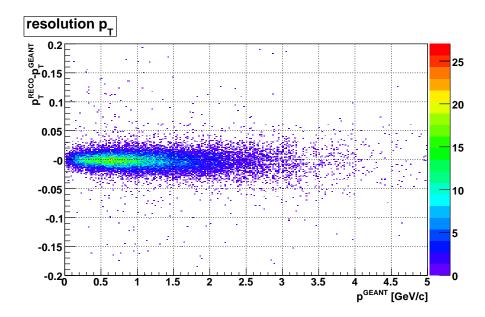


Figure 4: Distribution of p_T^{GEANT} - p_T^{MuKpi} vs p_T^{GEANT}

The next histograms are the results from *FitSlicesY()*

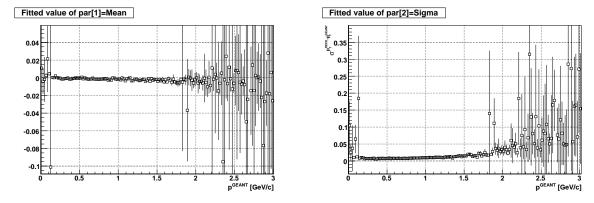


Figure 5: Mean and σ of Δp_t